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1 Probability and You

Whether you like it or not, probabilities rule your life. If you have
ever tried to make a living as a gambler, you are painfully aware
of this, but even those of us with more mundane life stories are
constantly affected by these little numbers.

Example 1.1. Some examples from daily life where probability
calculations are involved are the determination of insurance premi-
ums, the introduction of new medications on the market, opinion
polls, weather forecasts, and DNA evidence in courts. Probabil-
ities also rule who you are. Did daddy pass you the X or the Y
chromosome? Did you inherit grandma’s big nose?

Meanwhile, in everyday life, many of us use probabilities in our
language and say things like “I’m 99% certain” or “There is a one-
in-a-million chance” or, when something unusual happens, ask the
rhetorical question “What are the odds?”. [17, p 1]

1.1 Randomness

1.2. Many clever people have thought about and debated what
randomness really is, and we could get into a long philosophical
discussion that could fill up a whole book. Let’s not. The French
mathematician Laplace (1749–1827) put it nicely:

“Probability is composed partly of our ignorance, partly
of our knowledge.”
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Inspired by Laplace, let us agree that you can use probabilities
whenever you are faced with uncertainty. [17, p 2]

1.3. Random phenomena arise because of [13]:

(a) our partial ignorance of the generating mechanism

(b) the laws governing the phenomena may be fundamentally ran-
dom (as in quantum mechanics; see also Ex. 1.7.)

(c) our unwillingness to carry out exact analysis because it is not
worth the trouble

Example 1.4. Communication Systems [23]: The essence of
communication is randomness.

(a) Random Source: The transmitter is connected to a random
source, the output of which the receiver cannot predict with
certainty.

• If a listener knew in advance exactly what a speaker
would say, and with what intonation he would say it,
there would be no need to listen!

(b) Noise: There is no communication problem unless the trans-
mitted signal is disturbed during propagation or reception in
a random way.

(c) Probability theory is used to evaluate the performance of com-
munication systems.

Example 1.5. Random numbers are used directly in the transmis-
sion and security of data over the airwaves or along the Internet.

(a) A radio transmitter and receiver could switch transmission
frequencies from moment to moment, seemingly at random,
but nevertheless in synchrony with each other.

(b) The Internet data could be credit-card information for a con-
sumer purchase, or a stock or banking transaction secured by
the clever application of random numbers.
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Example 1.6. Randomness is an essential ingredient in games of
all sorts, computer or otherwise, to make for unexpected action
and keen interest.

Example 1.7. On a more profound level, quantum physicists
teach us that everything is governed by the laws of probability.
They toss around terms like the Schrödinger wave equation and
Heisenberg’s uncertainty principle, which are much too difficult for
most of us to understand, but one thing they do mean is that the
fundamental laws of physics can only be stated in terms of proba-
bilities. And the fact that Newton’s deterministic laws of physics
are still useful can also be attributed to results from the theory of
probabilities. [17, p 2]

1.8. Most people have preconceived notions of randomness that
often differ substantially from true randomness. Truly random
data sets often have unexpected properties that go against intuitive
thinking. These properties can be used to test whether data sets
have been tampered with when suspicion arises. [21, p 191]

• [14, p 174]: “people have a very poor conception of random-
ness; they do not recognize it when they see it and they cannot
produce it when they try”

Example 1.9. Apple ran into an issue with the random shuffling
method it initially employed in its iPod music players: true ran-
domness sometimes produces repetition, but when users heard the
same song or songs by the same artist played back-to-back, they
believed the shuffling wasn’t random. And so the company made
the feature “less random to make it feel more random,” said Apple
founder Steve Jobs. [14, p 175]

1.2 Background on Some Frequently Used Examples

Probabilists love to play with coins and dice. We like the idea of
tossing coins, rolling dice, and drawing cards as experiments that
have equally likely outcomes.

1.10. Coin flipping or coin tossing is the practice of throwing
a coin in the air to observe the outcome.
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When a coin is tossed, it does not necessarily fall heads or
tails; it can roll away or stand on its edge. Nevertheless, we shall
agree to regard “heads” (H) and “tails” (T) as the only possible
outcomes of the experiment. [4, p 7]

• Typical experiment includes

◦ “Flip a coin N times. Observe the sequence of heads and
tails” or “Observe the number of heads.”

1.11. Historically, dice is the plural of die , but in modern stan-
dard English dice is used as both the singular and the plural. [Ex-
cerpted from Compact Oxford English Dictionary.]

• Usually assume six-sided dice

• Usually observe the number of dots on the side facing up-
wards.

1.12. A complete set of cards is called a pack or deck.

(a) The subset of cards held at one time by a player during a
game is commonly called a hand.

(b) For most games, the cards are assembled into a deck, and
their order is randomized by shuffling.

(c) A standard deck of 52 cards in use today includes thirteen
ranks of each of the four French suits.

• The four suits are called spades (♠), clubs (♣), hearts
(♥), and diamonds (♦). The last two are red, the first
two black.

(d) There are thirteen face values (2, 3, . . . , 10, jack, queen, king,
ace) in each suit.

• Cards of the same face value are called of the same kind.

• “court” or face card: a king, queen, or jack of any suit.
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1.3 A Glimpse at Probability Theory

1.13. Probabilities are used in situations that involve random-
ness. A probability is a number used to describe how likely
something is to occur, and probability (without indefinite arti-
cle) is the study of probabilities. It is “the art of being certain
of how uncertain you are .” [17, p 2–4] If an event is certain
to happen, it is given a probability of 1. If it is certain not to
happen, it has a probability of 0. [7, p 66]

1.14. Probabilities can be expressed as fractions, as decimal num-
bers, or as percentages. If you toss a coin, the probability to get
heads is 1/2, which is the same as 0.5, which is the same as 50%.
There are no explicit rules for when to use which notation.

• In daily language, proper fractions are often used and often
expressed, for example, as “one in ten” instead of 1/10 (“one
tenth”). This is also natural when you deal with equally likely
outcomes.

• Decimal numbers are more common in technical and sci-
entific reporting when probabilities are calculated from data.
Percentages are also common in daily language and often with
“chance” replacing “probability.”

• Meteorologists, for example, typically say things like “there
is a 20% chance of rain.” The phrase “the probability of rain
is 0.2” means the same thing.

• When we deal with probabilities from a theoretical viewpoint,
we always think of them as numbers between 0 and 1, not as
percentages.

• See also 3.5.

[17, p 10]

Definition 1.15. Important terms [13]:

(a) An activity or procedure or observation is called a random
experiment if its outcome cannot be predicted precisely be-
cause the conditions under which it is performed cannot be
predetermined with sufficient accuracy and completeness.
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• The term “experiment” is to be construed loosely. We do
not intend a laboratory situation with beakers and test
tubes.

• Tossing/flipping a coin, rolling a dice, and drawing a card
from a deck are some examples of random experiments.

(b) A random experiment may have several separately identifiable
outcomes. We define the sample space Ω as a collection
of all possible (separately identifiable) outcomes/results/mea-
surements of a random experiment. Each outcome (ω) is an
element, or sample point, of this space.

• Rolling a dice has six possible identifiable outcomes
(1, 2, 3, 4, 5, and 6).

(c) Events are sets (or classes) of outcomes meeting some spec-
ifications.

• Any1 event is a subset of Ω.

• Intuitively, an event is a statement about the outcome(s)
of an experiment.

1.16. Let’s consider a random experiment and a specific event A.

• For example, toss two (fair) dice. Let A be the event that the
sum is 11.

After the experiment has been performed, the event A may
“occur” or “not occur”. The probability that it occurs is denoted
by P (A).

• We shall see later that P (A) for the example above is 1/18.

1.17. The goal of probability theory is to compute the probability
of various events of interest. Because events are, by definitions, sets
of outcomes. Hence, we calculate the corresponding probabilities,
we are dealing with a set function which is defined on subsets of
Ω.

1For our class, it may be less confusing to allow event A to be any collection of outcomes
(, i.e. any subset of Ω).

In more advanced courses, when we deal with uncountable Ω, we limit our interest to only
some subsets of Ω. Technically, the collection of these subsets must form a σ-algebra.
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1.18. Question: How to interpret the value of probability for
event and event? What does the value of P (A) tell us about event
A?

Example 1.19. The statement “when a coin is tossed, the prob-
ability to get heads is l/2 (50%)” is a precise statement.

(a) It tells you that you are as likely to get heads as you are to
get tails.

(b) Another way to think about probabilities is in terms of aver-
age long-term behavior. In this case, if you toss the coin
repeatedly, in the long run you will get roughly 50% heads
and 50% tails.

Although the outcome of a random experiment is unpredictable,
there is a statistical regularity about the outcomes. What you
cannot be certain of is how the next toss will come up. [17, p 4]

Example 1.20. Return to the coin tossing experiment in Ex. 1.19:

1.21. Long-run frequency interpretation : If the probability
of an event A in some actual physical experiment is p, then we
believe that if the experiment is repeated independently over and
over again, then a theorem called the law of large numbers
(LLN) states that, in the long run, the event A will happen ap-
proximately 100p% of the time. In other words, if we repeat an
experiment a large number of times then the fraction of times
the event A occurs will be close to P (A).
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Definition 1.22. Let A be one of the events of a random exper-
iment. If we conduct a sequence of n independent trials of this
experiment, and if the event A occurs in N(A, n) out of these n
trials, then the fraction

is called the relative frequency of the event A in these n trials.

1.23. The long-run frequency interpretation mentioned in 1.21
can be restated as

P (A) “=” lim
n→∞

N(A, n)

n
.

Example 1.24. Return to the coin tossing experiment in Ex. 1.19
and Ex. 1.20: We flip a coin n times. For each flip, let A be the
event that we get heads. The values of the relative frequency N(A,n)

n

as we increase the value of n are plotted below.Coin Tossing: Relative Frequency
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Figure 1: If a fair coin is flipped a large number of times, the proportion of
heads will tend to get closer to 1

2
as the number of tosses increases.
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1.25. In terms of practical range, probability theory is comparable
with geometry ; both are branches of applied mathematics that
are directly linked with the problems of daily life. But while pretty
much anyone can call up a natural feel for geometry to some extent,
many people clearly have trouble with the development of a good
intuition for probability.

• Probability and intuition do not always agree. In no other
branch of mathematics is it so easy to make mistakes
as in probability theory.

• Students facing difficulties in grasping the concepts of prob-
ability theory might find comfort in the idea that even the
genius Leibniz, the inventor of differential and integral cal-
culus along with Newton, had difficulties in calculating the
probability of throwing 11 with one throw of two dice. (See
Ex. 3.4.)

[21, p 4]

1.26. Summary:Summary: 

1

 Ingredient of Probability Theory:
 Random experiment

 Outcome 𝜔 each outcome represent a result from the experiment

 Sample space Ω collection (set) of all possible outcomes

 Event 𝐴 collection of outcomes that meets some specifications
⊂ 𝛺

define outcomes of interest from a random experiment

 𝑃 𝐴 probability of event 𝐴
 For a random experiment and a specific event 𝐴,

when the experiment has been performed,
the event may occur or not occur.
The probability that it occurs is denoted by 𝑃 𝐴 .
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Summary: 

1

 Q: How do we interpret the value of probability?

What does the value of tells us about event ?

 A: “long-run frequency interpretation”
 Repeat the experiment 𝑛 times (𝑛 should be large).
 Count the “fraction of times that 𝐴 occurs” among these 

𝑛 repetitions.
This is called the “relative frequency” of event 𝐴.

 Law of Large Numbers (LLN)
 As 𝑛 → ∞, the relative frequency of event 𝐴 will converge to 𝑃 𝐴 .

 When 𝑛 is not ∞, but large, the fraction should be close to 𝑃 𝐴 .
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2 Review of Set Theory

Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6}

2.2. Venn diagram is very useful in set theory. It is often used
to portray relationships between sets. Many identities can be read
out simply by examining Venn diagrams.“K-Map”-Style Venn Diagram

1
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Figure 2: Example of a Venn
diagram for two sets and a
corresponding “K-Map”-style
diagram

“K-Map”-Style Venn Diagram
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Figure 3: Example of a Venn
diagram for three sets and a
corresponding “K-Map”-style
diagram

2.3. Membership: If ω is a member of a set A, we write ω ∈ A.

Definition 2.4. Basic set operations (set algebra)

• Complementation: Ac = {ω : ω /∈ A}.
• Union: A ∪B = {ω : ω ∈ A or ω ∈ B}
◦ Here “or”is inclusive; i.e., if ω ∈ A, we permit ω to belong

either to A or to B or to both.

14



◦ Extension: The union of the events A1, A2, . . . , An is de-
noted by

⋃n
i=1Ai. It consists of all outcomes that are in

any of the events Ai.

• Intersection: A ∩B = {ω : ω ∈ A and ω ∈ B}

◦ Hence, ω ∈ A if and only if ω belongs to both A and B.

◦ Extension: The intersection of the events A1, A2, . . . , An

is denoted by
⋂n
i=1Ai. It consists of all outcomes that are

in all of the events Ai.

◦ A ∩ B is sometimes written simply as AB. We will not
use that notation here.

• The set difference operation is defined by B \A = B ∩Ac.

◦ B \ A is the set of ω ∈ B that do not belong to A.

◦ When A ⊂ B, B \A is called the complement of A in B.

2.5. Basic Set Identities:

• Idempotence: (Ac)c = A

• Commutativity (symmetry):

A ∪B = B ∪ A , A ∩B = B ∩ A

• Associativity:

◦ A ∩ (B ∩ C) = (A ∩B) ∩ C
◦ A ∪ (B ∪ C) = (A ∪B) ∪ C

• Distributivity
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◦ A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

◦ A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

• de Morgan laws

◦ (A ∪B)c = Ac ∩Bc

◦ (A ∩B)c = Ac ∪Bc

2.6. Disjoint Sets:

• Sets A and B are said to be disjoint (A ⊥ B) if and only if
A ∩B = ∅. (They do not share member(s).)

• A collection of sets (Ai : i ∈ I) is said to be (pairwise) dis-
joint or mutually exclusive [9, p. 9] if and only if Ai∩Aj = ∅
when i 6= j.

Example 2.7. Sets A, B, and C are pairwise disjoint if

2.8. For a set of sets, to avoid the repeated use of the word “set”,
we will call it a collection/class/family of sets.

Definition 2.9. Given a set S, a collection Π = (Aα : α ∈ I) of
subsets2 of S is said to be a partition of S if

(a) S =
⋃
α∈I

Aα and

(b) For all i 6= j, Ai ⊥ Aj (pairwise disjoint).

Remarks:

• The subsets Aα, α ∈ I are called the parts of the partition.

2In this case, the subsets are indexed or labeled by α taking values in an index or label
set I
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• A part of a partition may be empty, but usually there is no
advantage in considering partitions with one or more empty
parts.

Example 2.10. Let S = {1, 2, 3, 4, 5, 6}, A = {1}, B = {3, 4},
C = {2, 5, 6}, and D = {1, 2, 5, 6}.

(a) The collection of sets A,B and C forms a partition of set S.

(b) Another partition is the collection of sets B and D.

Example 2.11 (Slide:maps).

Example 2.12. Let E be the set of students taking ECS315

Definition 2.13. Important sets involving (real) numbers:

(a) The set N of all natural numbers.

• More specifically, N = {1, 2, 3, . . . }.
• Note that ∞ is not a member of this set.

(b) The set Z of all integers

(c) The set R of all real numbers

• R can be expressed as an interval (−∞,∞).
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(d) An interval is a set of real numbers with the property that
any number that lies between two numbers in the set is also
included in the set. The interval of numbers between a and
b, including a and b, is often denoted [a, b]. The two numbers
are called the endpoints of the interval.

To indicate that one of the endpoints is to be excluded from
the set, the corresponding square bracket can be replaced with
a parenthesis. For example,

[a, b) = {x ∈ R | a ≤ x < b}.

Definition 2.14. A singleton is a set with exactly one element.

• Ex. {1.5}, {.8}, {π}.

• Caution: Be sure you understand the difference between the
outcome -8 and the event {−8}, which is the set consisting of
the single outcome −8.

Definition 2.15. The cardinality (or size) of a collection or set
A, denoted |A|, is the number of elements of the collection. This
number may be finite or infinite.

(a) A finite set is a set that has a finite number of elements. In
other words, it is either

(i) an empty set,

(ii) a singleton, or

(iii) a set whose elements can be listed in the form {a1, a2, . . . , an}
for some n ∈ N.

(b) A set that is not finite is called infinite. These sets have
more than n elements for any integer n.
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Definition 2.16. A countable set is a set with the same cardi-
nality as some subset of the set of natural numbers. A countable
set is either

(a) a finite set (potentially an empty set), or

(b) an infinite set if its elements can be listed in a sequence:
a1, a2, . . . . In such case, the set is said to be countably in-
finite.

Whether finite or infinite, the elements of a countable set can al-
ways be counted one at a time and, although the counting may
never finish, every element of the set is associated with a natu-
ral number. Countable sets form the foundation of a branch of
mathematics called discrete mathematics.Infinite Sets and Countable Sets

1

Collection 
of infinite 
sets

Collection of countable sets

Collection of 
countably 
infinite sets

Collection of 
uncountable
sets

Collection of 
finite sets
This includes the empty 
set and any set whose 
element(s) can be listed in 
the form 𝑎 , 𝑎 ,… , 𝑎
for some 𝑛 ∈ ℕ. 

This includes any set 
whose element(s) can be 
listed in the form 
𝑎 , 𝑎 ,… .

Example of such sets 
are intervals of positive 
length and their unions.

Nothing in here.

Figure 4:
Categorizing
sets by
whether they
are infinite
and whether
they are
countable.

Example 2.17. Examples of countably infinite sets:

• the set N = {1, 2, 3, . . . } of natural numbers,

• the set {2k : k ∈ N} of all even numbers,

• the set {2k − 1 : k ∈ N} of all odd numbers,
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• the set Z of integers,

Infinite Sets and Countable Sets

1

Collection 
of infinite 
sets

Collection of countable sets

Nothing in here.

∅ 
singletons such as 

1 , 𝑎
𝑎, 𝑏
𝑥, 𝑦, 𝑧

ℕ 1,2,3, …
2,4,8, …
0, 2, 4, 8, …

ℝ ∞, ∞
0,1
0,1 ∪ 5,7

Figure 5:
Examples
of Infinite
Sets and
Countable
Sets

Definition 2.18. A set that is not countable is called uncount-
able set (or uncountably infinite set). It contains too many ele-
ments to be countable.

Example 2.19. Example of uncountable sets3:

• R = (−∞,∞)

• interval with positive length: [0, 1]

• union of intervals with positive length: (2, 3) ∪ [5, 7)

3We use a technique called diagonal argument to prove that a set is not countable and
hence uncountable.
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Set Theory Probability Theory
Set Event

Universal set Sample Space (Ω)
Element Outcome (ω)

Table 1: The terminology of set theory and probability theory

Event Language
A A occurs
Ac A does not occur

A ∪B Either A or B occur
A ∩B Both A and B occur

Table 2: Event Language

2.20. From Definitions 2.15 and 2.16, and 2.18, we can categorize
sets according to whether they are infinite and whether they are
countable. This is illustrated in Figure 4.

Definition 2.21. Probability theory renames some of the termi-
nology in set theory. See Table 1 and Table 2.

• Sometimes, ω’s are called states, and Ω is called the state
space.

2.22. Because of the mathematics required to determine proba-
bilities, probabilistic methods are divided into two distinct types,
discrete and continuous. A discrete approach is used when the
number of experimental outcomes is finite (or infinite but count-
able). A continuous approach is used when the outcomes are con-
tinuous (and therefore infinite). It will be important to keep in
mind which case is under consideration since otherwise, certain
paradoxes may result.
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3 Classical Probability

Classical probability, which is based upon the ratio of the number
of outcomes favorable to the occurrence of the event of interest to
the total number of possible outcomes, provided most of the prob-
ability models used prior to the 20th century. It is the first type
of probability problems studied by mathematicians, most notably,
Frenchmen Fermat and Pascal whose 17th century correspondence
with each other is usually considered to have started the system-
atic study of probabilities. [17, p 3] Classical probability remains
of importance today and provides the most accessible introduction
to the more general theory of probability.

Definition 3.1. Given a finite sample space Ω, the classical
probability of an event A is

P (A) =
|A|
|Ω| (1)

[6, Defn. 2.2.1 p 58]. In traditional language, a probability is
a fraction in which the bottom represents the number of possi-
ble outcomes, while the number on top represents the number of
outcomes in which the event of interest occurs.

• Assumptions: When the following are not true, do not calcu-
late probability using (1).

◦ Finite Ω: The number of possible outcomes is finite.

◦ Equipossibility: The outcomes have equal probability of
occurrence.

• The bases for identifying equipossibility were often

◦ physical symmetry (e.g. a well-balanced dice, made of
homogeneous material in a cubical shape) or

◦ a balance of information or knowledge concerning the var-
ious possible outcomes.

• Equipossibility is meaningful only for finite sample space, and,
in this case, the evaluation of probability is accomplished
through the definition of classical probability.
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• We will NOT use this definition beyond this section. We will
soon introduce a formal definition in Section 5.

• In many problems, when the finite sample space does not
contain equally likely outcomes, we can redefine the sample
space to make the outcome equipossible.

Example 3.2 (Slide). In drawing a card from a deck, there are 52
equally likely outcomes, 13 of which are diamonds. This leads to
a probability of 13/52 or 1/4.

3.3. Basic properties of classical probability: From Definition 3.1,
we can easily verified4 the properties below.

• P (A) ≥ 0

• P (Ω) = 1

• P (∅) = 0

• P (Ac) = 1− P (A)

• P (A ∪ B) = P (A) + P (B)− P (A ∩ B) which comes directly
from

|A ∪B| = |A|+ |B| − |A ∩B|.

• A ⊥ B ⇒ P (A ∪B) = P (A) + P (B)

• Suppose Ω = {ω1, . . . , ωn} and P ({ωi}) = 1
n . Then P (A) =∑

ω∈A
P ({ω}).

◦ The probability of an event is equal to the sum of the
probabilities of its component outcomes because outcomes
are mutually exclusive

4Because we will not rely on Definition 3.1 beyond this section, we will not worry about
how to prove these properties. In Section 5, we will prove the same properties in a more
general setting.
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Example 3.4 (Slides). When rolling two dice, there are 36 (equiprob-
able) possibilities.

P [sum of the two dice = 5] = 4/36.

Though one of the finest minds of his age, Leibniz was not
immune to blunders: he thought it just as easy to throw 12 with
a pair of dice as to throw 11. The truth is...

P [sum of the two dice = 11] =

P [sum of the two dice = 12] =

Definition 3.5. In the world of gambling, probabilities are often
expressed by odds. To say that the odds are n:1 against the event
A means that it is n times as likely that A does not occur than
that it occurs. In other words, P (Ac) = nP (A) which implies
P (A) = 1

n+1 and P (Ac) = n
n+1 .

“Odds” here has nothing to do with even and odd numbers.
The odds also mean what you will win, in addition to getting your
stake back, should your guess prove to be right. If I bet $1 on a
horse at odds of 7:1, I get back $7 in winnings plus my $1 stake.
The bookmaker will break even in the long run if the probability
of that horse winning is 1/8 (not 1/7). Odds are “even” when they
are 1:1 - win $1 and get back your original $1. The corresponding
probability is 1/2.

3.6. It is important to remember that classical probability relies
on the assumption that the outcomes are equally likely.

Example 3.7. Mistake made by the famous French mathemati-
cian Jean Le Rond d’Alembert (18th century) who is an author of
several works on probability:

“The number of heads that turns up in those two tosses can
be 0, 1, or 2. Since there are three outcomes, the chances of each
must be 1 in 3.”
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4 Enumeration / Combinatorics / Counting

There are many probability problems, especially those concerned
with gambling, that can ultimately be reduced to questions about
cardinalities of various sets. Combinatorics is the study of sys-
tematic counting methods, which we will be using to find the car-
dinalities of various sets that arise in probability.

4.1 Four Principles

4.1. Addition Principle (Rule of sum):

• When there are m cases such that the ith case has ni options,
for i = 1, . . . ,m, and no two of the cases have any options in
common, the total number of options is n1 + n2 + · · ·+ nm.

• In set-theoretic terms, suppose that a finite set S can be par-
titioned5 into (pairwise disjoint parts) S1, S2, . . . , Sm. Then,

|S| = |S1|+ |S2|+ · · ·+ |Sm|.
5The art of applying the addition principle is to partition the set S to be counted into

“manageable parts”; that is, parts which we can readily count. But this statement needs to
be qualified. If we partition S into too many parts, then we may have defeated ourselves.
For instance, if we partition S into parts each containing only one element, then applying the
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In words, “if you can count the number of elements in all of
the parts of a partition of S, then |S| is simply the sum of the
number of elements in all the parts”.

Example 4.2. We may find the number of people living in a coun-
try by adding up the number from each province/state.

Example 4.3. [1, p 28] Suppose we wish to find the number of
different courses offered by SIIT. We partition the courses accord-
ing to the department in which they are listed. Provided there is
no cross-listing (cross-listing occurs when the same course is listed
by more than one department), the number of courses offered by
SIIT equals the sum of the number of courses offered by each de-
partment.

Example 4.4. [1, p 28] A student wishes to take either a mathe-
matics course or a biology course, but not both. If there are four
mathematics courses and three biology courses for which the stu-
dent has the necessary prerequisites, then the student can choose
a course to take in 4 + 3 = 7 ways.

Example 4.5. Let A, B, and C be finite sets. How many triples
are there of the form (a,b,c), where a ∈ A, b ∈ B, c ∈ C?

4.6. Tree diagrams: When a sample can be constructed in sev-
eral steps or stages, we can represent each of the n1 ways of com-
pleting the first step as a branch of a tree. Each of the ways
of completing the second step can be represented as n2 branches

addition principle is the same as counting the number of parts, and this is basically the same
as listing all the objects of S. Thus, a more appropriate description is that the art of applying
the addition principle is to partition the set S into not too many manageable parts.[1, p 28]
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starting from the ends of the original branches, and so forth. The
size of the set then equals the number of branches in the last level
of the tree, and this quantity equals

n1 × n2 × · · ·
4.7. Multiplication Principle (Rule of product):

• When a procedure/operation can be broken down into m
steps,
such that there are n1 options for step 1,
and such that after the completion of step i−1 (i = 2, . . . ,m)
there are ni options for step i (for each way of completing step
i− 1),
the number of ways of performing the procedure is n1n2 · · ·nm.

• In set-theoretic terms, if sets S1, S2, . . . , Sm are finite, then
|S1 × S2 × · · · × Sm| = |S1| × |S2| × · · · × |Sm|.
• For m finite sets A1, A2, . . . , Am, there are |A1| × |A2| × · · · ×
|Am| m-tuples of the form (a1, a2, . . . , am) where each ai ∈ Ai.

Example 4.8. Suppose that a deli offers three kinds of bread,
three kinds of cheese, four kinds of meat, and two kinds of mustard.
How many different meat and cheese sandwiches can you make?

First choose the bread. For each choice of bread, you then
have three choices of cheese, which gives a total of 3 × 3 = 9
bread/cheese combinations (rye/swiss, rye/provolone, rye/ched-
dar, wheat/swiss, wheat/provolone ... you get the idea). Then
choose among the four kinds of meat, and finally between the
two types of mustard or no mustard at all. You get a total of
3× 3× 4× 3 = 108 different sandwiches.

Suppose that you also have the choice of adding lettuce, tomato,
or onion in any combination you want. This choice gives another
2 x 2 x 2 = 8 combinations (you have the choice “yes” or “no”
three times) to combine with the previous 108, so the total is now
108× 8 = 864.

That was the multiplication principle. In each step you have
several choices, and to get the total number of combinations, mul-
tiply. It is fascinating how quickly the number of combinations
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grow. Just add one more type of bread, cheese, and meat, respec-
tively, and the number of sandwiches becomes 1,920. It would take
years to try them all for lunch. [17, p 33]

Example 4.9 (Slides). In 1961, Raymond Queneau, a French poet
and novelist, wrote a book called One Hundred Thousand Billion
Poems. The book has ten pages, and each page contains a sonnet,
which has 14 lines. There are cuts between the lines so that each
line can be turned separately, and because all lines have the same
rhyme scheme and rhyme sounds, any such combination gives a
readable sonnet. The number of sonnets that can be obtained in
this way is thus 1014 which is indeed a hundred thousand billion.
Somebody has calculated that it would take about 200 million
years of nonstop reading to get through them all. [17, p 34]

Example 4.10. There are 2n binary strings/sequences of length
n.

Example 4.11. For a finite set A, the cardinality of its power set
2A is

|2A| = 2|A|.

Example 4.12. (Slides) Jack is so busy that he’s always throwing
his socks into his top drawer without pairing them. One morning
Jack oversleeps. In his haste to get ready for school, (and still a
bit sleepy), he reaches into his drawer and pulls out 2 socks. Jack
knows that 4 blue socks, 3 green socks, and 2 tan socks are in his
drawer.

(a) What are Jack’s chances that he pulls out 2 blue socks to
match his blue slacks?
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(b) What are the chances that he pulls out a pair of matching
socks?

Example 4.13. [1, p 29–30] Determine the number of positive
integers that are factors of the number

34 × 52 × 117 × 138.

The numbers 3,5,11, and 13 are prime numbers. By the funda-
mental theorem of arithmetic, each factor is of the form

3i × 5j × 11k × 13`,

where 0 ≤ i ≤ 4, 0 ≤ j ≤ 2, 0 ≤ k ≤ 7, and 0 ≤ ` ≤ 8. There are
five choices for i, three for j, eight for k, and nine for `. By the
multiplication principle, the number of factors is

5× 3× 8× 9 = 1080.

4.14. Subtraction Principle : Let A be a set and let S be a
larger set containing A. Then

|A| = |S| − |S \ A|

• When S is the same as Ω, we have |A| = |Ω| − |Ac|

• Using the subtraction principle makes sense only if it is easier
to count the number of objects in S and in S \ A than to
count the number of objects in A.

Example 4.15. Chevalier de Mere’s Scandal of Arithmetic:

Which is more likely, obtaining at least one six in 4 tosses
of a fair dice (event A), or obtaining at least one double
six in 24 tosses of a pair of dice (event B)?
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We have

P (A) =
64 − 54

64
= 1−

(
5

6

)4

≈ .518

and

P (B) =
3624 − 3524

3624 = 1−
(

35

36

)24

≈ .491.

Therefore, the first case is more probable.
Remark 1: Probability theory was originally inspired by gam-

bling problems. In 1654, Chevalier de Mere invented a gambling
system which bet even money6 on event B above. However, when
he began losing money, he asked his mathematician friend Pas-
cal to analyze his gambling system. Pascal discovered that the
Chevalier’s system would lose about 51 percent of the time. Pas-
cal became so interested in probability and together with another
famous mathematician, Pierre de Fermat, they laid the foundation
of probability theory. [U-X-L Encyclopedia of Science]

Remark 2: de Mere originally claimed to have discovered a
contradiction in arithmetic. De Mere correctly knew that it was
advantageous to wager on occurrence of event A, but his experience
as gambler taught him that it was not advantageous to wager on
occurrence of event B. He calculated P (A) = 1/6 + 1/6 + 1/6 +
1/6 = 4/6 and similarly P (B) = 24 × 1/36 = 24/36 which is
the same as P (A). He mistakenly claimed that this evidenced a
contradiction to the arithmetic law of proportions, which says that
4
6 should be the same as 24

36 . Of course we know that he could not
simply add up the probabilities from each tosses. (By De Meres
logic, the probability of at least one head in two tosses of a fair
coin would be 2× 0.5 = 1, which we know cannot be true). [21, p
3]

4.16. Division Principle (Rule of quotient): When a finite
set S is partitioned into equal-sized parts of m elements each, there
are |S|m parts.

6Even money describes a wagering proposition in which if the bettor loses a bet, he or she
stands to lose the same amount of money that the winner of the bet would win.
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4.2 Four Kinds of Counting Problems

4.17. Choosing objects from a collection is called sampling, and
the group/list/sequence of the chosen objects are known as a sam-
ple. The four kinds of counting problems (and their corresponding
formulas) are [9, p 34]:

(a) Ordered sampling of r out of n
items with replacement: nr;

(b) Ordered sampling of r ≤ n out of
n items without replacement: (n)r;

(c) Unordered sampling of r ≤ n out of
n items without replacement:

(
n
r

)
;

(d) Unordered sampling of r out of n
items with replacement:

(
n+r−1

r

)
.

• See 4.36 for “bars and stars”
argument.

Many counting problems can be simplified/solved by realizing
that they are equivalent to one of these counting problems.

4.18. Ordered Sampling: Given a set of n distinct items/objects,
select a distinct ordered7 sequence (word) of length r drawn from
this set.

(a) Ordered sampling with replacement : µn,r = nr

• Ordered sampling of r out of n items with replacement.

• The “with replacement” part means “an object can be
chosen repeatedly.”

• Example: From a deck of n cards, we draw r cards with
replacement; i.e., we draw a card, make a note of it, put
the card back in the deck and re-shuffle the deck before
choosing the next card. How many different sequences of
r cards can be drawn in this way? [9, Ex. 1.30]

7Different sequences are distinguished by the order in which we choose objects.
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(b) Ordered sampling without replacement :

(n)r =
r−1∏
i=0

(n− i) =
n!

(n− r)!
= n · (n− 1) · · · (n− (r − 1))︸ ︷︷ ︸

r terms

; r ≤ n

• Ordered sampling of r ≤ n out of n items without re-
placement.

• The “without replacement” means “once we choose an
object, we remove that object from the collection and we
cannot choose it again.”

• In Excel, use PERMUT(n,r).

• Sometimes referred to as “the number of possible r-permutations
of n distinguishable objects”

• Example: The number of sequences8 of size r drawn from
an alphabet of size n without replacement.

(3)2 = 3 × 2 = 6 is the number of sequences of size 2
drawn from an alphabet of size 3 without replacement.

Suppose the alphabet set is {A, B, C}. We can list all
sequences of size 2 drawn from {A, B, C} without re-
placement:

A B
A C
B A
B C
C A
C B

• Example: From a deck of 52 cards, we draw a hand of 5
cards without replacement (drawn cards are not placed
back in the deck). How many hands can be drawn in this
way?

8Elements in a sequence are ordered.
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• For integers r, n such that r > n, we have (n)r = 0.

• We define (n)0 = 1. (This makes sense because we usually
take the empty product to be 1.)

• (n)1 = n

• (n)r = (n−(r−1))(n)r−1. For example, (7)5 = (7−4)(7)4.

• (1)r =

{
1, if r = 1
0, if r > 1

• Extended definition: The definition in product form

(n)r =
r−1∏
i=0

(n− i) = n · (n− 1) · · · (n− (r − 1))︸ ︷︷ ︸
r terms

can be extended to any real number n and a non-negative
integer r.

Example 4.19. (Slides) The Seven Card Hustle: Take five red
cards and two black cards from a pack. Ask your friend to shuffle
them and then, without looking at the faces, lay them out in a row.
Bet that them cant turn over three red cards. The probability that
they CAN do it is

Definition 4.20. For any integer n greater than 1, the symbol n!,
pronounced “n factorial,” is defined as the product of all positive
integers less than or equal to n.

(a) 0! = 1! = 1

(b) n! = n(n− 1)!

(c) n! =
∞∫
0

e−ttndt

(d) Computation:
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(i) MATLAB: Use factorial(n). Since double precision num-
bers only have about 15 digits, the answer is only accurate
for n ≤ 21. For larger n, the answer will have the right
magnitude, and is accurate for the first 15 digits.

(ii) Google’s web search box built-in calculator: Use n!

(e) Approximation: Stirling’s Formula [5, p. 52]:

n! ≈
√

2πnnne−n =
(√

2πe
)
e(n+ 1

2) ln(ne ). (2)

In some references, the sign ≈ is replaced by ∼ to emphasize
that the ratio of the two sides converges to unity as n→∞.

4.21. Factorial and Permutation : The number of arrange-
ments (permutations) of n ≥ 0 distinct items is (n)n = n!.

• Meaning: The number of ways that n distinct objects can be
ordered.

◦ A special case of ordered sampling without replacement
where r = n.

• In MATLAB, use perms(v), where v is a row vector of length
n, to creates a matrix whose rows consist of all possible per-
mutations of the n elements of v. (So the matrix will contain
n! rows and n columns.)

Example 4.22. In MATLAB, perms([3 4 7]) gives

7 4 3
7 3 4
4 7 3
4 3 7
3 4 7
3 7 4
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Similarly, perms(’abcd’) gives

dcba dcab dbca dbac dabc dacb
cdba cdab cbda cbad cabd cadb
bcda bcad bdca bdac badc bacd
acbd acdb abcd abdc adbc adcb

Example 4.23. (Slides) Finger-Smudge on Touch-Screen Devices

Example 4.24. How many people do you need to assemble before
the probability is greater than 50% that some two of them have
the same birthday (month and day)?
Assumptions:

• Birthdays consist of a month and a day with no year attached.

• Ignore February 29 which only comes in leap years.

• Assume that every day is as likely as any other to be someones
birthday.

Probability of coincidence birthday : Probability that there is
at least two people who have the same birthdayin a group of r
persons:

It is surprising to see, in Figure 6, how quickly the probability
approaches 1 as r grows larger.
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Classical Probability 
1) Birthday Paradox: In a group of 23 randomly selected people, the probability that 

at least two will share a birthday (assuming birthdays are equally likely to occur 
on any given day of the year) is about 0.5. See also (3). 
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Figure 6: pu(n, r): The probability of the event that at least one element appears
twice in random sample of size r with replacement is taken from a population
of n elements.

Birthday Paradox : In a group of 23 randomly selected peo-
ple, the probability that at least two will share a birthday (assum-
ing birthdays are equally likely to occur on any given day of the
year9) is about 0.5.

• At first glance it is surprising that the probability of 2 people
having the same birthday is so large10, since there are only 23
people compared with 365 days on the calendar. Some of the
surprise disappears if you realize that there are

(
23
2

)
= 253

pairs of people who are going to compare their birthdays. [3,
p. 9]

Remarks11:

• With 88 people, the probability is greater than 1/2 of having
three people with the same birthday.

• 187 people gives a probability greater than 1/2 of four people
having the same birthday.

9In reality, birthdays are not uniformly distributed. In which case, the probability of a
match only becomes larger for any deviation from the uniform distribution. This result can
be mathematically proved. Intuitively, you might better understand the result by thinking of
a group of people coming from a planet on which people are always born on the same day.

10In other words, it was surprising that the size needed to have 2 people with the same
birthday was so small.

11[Rosenhouse, 2009, p 7], [E. H. McKinney, “Generalized Birthday Problem”: American
Mathematical Monthly, Vol. 73, No.4, 1966, pp. 385-87.]
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Example 4.25. Another variant of the birthday coincidence para-
dox: The group size must be at least 253 people if you want a
probability > 0.5 that someone will have the same birthday as
you. [3, Ex. 1.13] (The probability is given by 1−

(
364
365

)r
.)

• A naive (but incorrect) guess is that d365/2e = 183 people
will be enough. The “problem” is that many people in the
group will have the same birthday, so the number of different
birthdays is smaller than the size of the group.

• On late-night television’s The Tonight Show with Johnny Car-
son, Carson was discussing the birthday problem in one of his
famous monologues. At a certain point, he remarked to his
audience of approximately 100 people: “Great! There must
be someone here who was born on my birthday!” He was off
by a long shot. Carson had confused two distinctly different
probability problems: (1) the probability of one person out of
a group of 100 people having the same birth date as Carson
himself, and (2) the probability of any two or more people out
of a group of 101 people having birthdays on the same day.
[21, p 76]

4.26. Now, let’s revisit ordered sampling of r out of n different
items without replacement. One way to look at the sampling is to
first consider the n! permutations of the n items. Now, use only
the first r positions. Because we do not care about the last n− r
positions, we will group the permutations by the first r positions.
The size of each group will be the number of possible permutations
of the n − r items that has not already been used in the first r
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positions. So, each group will contain (n − r)! members. By the
division principle, the number of groups is n!/(n− r)!.

4.27. The number of permutations of n = n1 + n2 + · · · + nr
objects of which n1 are of one type, n2 are of the second type, n3

are of the third type, . . . , and nr are of the rth type is(
n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr!
.

Example 4.28. The number of permutations of AABC

Example 4.29. The number of permutations of AAABC

Example 4.30. The number of permutations of AABBCCC

Example 4.31. Bar Codes: A part is labeled by printing with
four thick lines, three medium lines, and two thin lines. If each
ordering of the nine lines represents a different label, how many
different labels can be generated by using this scheme?
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4.32. Binomial coefficient :(
n

r

)
=

(n)r
r!

=
n!

(n− r)!r!

(a) Read “n choose r”.

(b) Meaning:

(i) Unordered sampling of r ≤ n out of n distinct items
without replacement

(ii) The number of subsets of size r that can be formed from
a set of n elements (without regard to the order of selec-
tion).

(iii) The number of combinations of n objects selected r at a
time.

(iv) the number of r-combinations of n objects.

(v) The number of (unordered) sets of size r drawn from an
alphabet of size n without replacement.

(c) Computation:

(i) MATLAB:

• nchoosek(n,r), where n and r are nonnegative inte-
gers, returns

(
n
r

)
.

• nchoosek(v,r), where v is a row vector of length n,
creates a matrix whose rows consist of all possible
combinations of the n elements of v taken r at a time.
The matrix will contains

(
n
r

)
rows and r columns.
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◦ Example: nchoosek(’abcd’,2) gives

ab
ac
ad
bc
bd
cd

(ii) Excel: combin(n,r)

(iii) Mathcad: combin(n,r)

(iv) Maple:
(
n
r

)
(v) Google’s web search box built-in calculator: n choose r

(d) Reflection property:
(
n
r

)
=
(
n
n−r
)
.

(e)
(
n
n

)
=
(
n
0

)
= 1.

(f)
(
n
1

)
=
(
n
n−1

)
= n.

(g)
(
n
r

)
= 0 if n < r or r is a negative integer.

(h) max
r

(
n
r

)
=
(

n

bn+1
2 c
)
.

Example 4.33. In bridge, 52 cards are dealt to four players;
hence, each player has 13 cards. The order in which the cards
are dealt is not important, just the final 13 cards each player ends
up with. How many different bridge games can be dealt? (Answer:
53,644,737,765,488,792,839,237,440,000)
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4.34. Unordered sampling with replacement : There are
n items. We sample r out of these n items with replacement.
Because the order in the sequences is not important in this kind
of sampling, two samples are distinguished by the number of each
item in the sequence. In particular, suppose r letters are drawn
with replacement from a set {a1, a2, . . . , an}. Let xi be the number
of ai in the drawn sequence. Because we sample r times, we know
that, for every sample, x1 + x2 + · · ·xn = r where the xi are non-
negative integers. By the bars-and-stars argument below, there
are

(
n+r−1

r

)
possible unordered samples with replacement.

Example 4.35. Suppose the items are four different letters A,B,C,D
(n = 4). We sample r = 8 out of these n items with replacement.

Example 4.36. The bars-and-stars argument: Find all non-
negative integers x1, x2, x3 such that

x1 + x2 + x3 = 3.

0 + 0 + 3
0 + 1 + 2
0 + 2 + 1
0 + 3 + 0
1 + 0 + 2
1 + 1 + 1
1 + 2 + 0
2 + 0 + 1
2 + 1 + 0
3 + 0 + 0

We see that any such configuration stands for a solution to the
equation, and any solution to the equation can be converted to
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such a walls-ones series. So we’ve established a bijection between
the solutions to our equation and the configurations of two walls
and three ones. So our problem reduces to “in how many ways
can we place two walls and three ones in five places?” We can do
this in

(
5
2

)
ways. So the number of solutions to our equation is(

5
2

)
= 10.

Example 4.37. Consider the equation

x1 + x2 + x3 + · · ·+ x10 = 15

where x1, x2, x3, . . . , x10 are nonnegative integers. How many solu-
tions does this equation have?

4.38. Summary and Extension: There are
(
r+n−1

r

)
=
(
r+n−1
n−1

)
distinct n-tuples (x1, x2, . . . , xn) of nonnegative integers such that
x1 + x2 + · · ·+ xn = r.

• We use n− 1 walls to separate r 1’s.

• This is the same as the number of ways to place r indistin-
guishable balls into n labeled urns.

(a) Suppose we further require that the xi are strictly positive
(xi ≥ 1), then there are

(
r−1
n−1

)
solutions.

(b) Extra Lower-bound Requirement : Suppose we further
require that xi ≥ ai where the ai are some given nonnegative
integers, then the number of solution is(

r − (a1 + a2 + · · ·+ an) + n− 1

n− 1

)
.

Note that here we work with equivalent problem: y1 + y2 +
· · ·+ yn = r −∑n

i=1 ai where yi ≥ 0.
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Example 4.39. Suppose words that are anagrams are considered
the same. How many ways are there to choose a 5-letter word from
the 26-letter English alphabet with replacement?

Observe that since anagrams are considered the same, the fea-
ture of interest is how many times each letter appears in the word
(ignoring the order in which the letters appear). To translate this
into a stars-and-bars problem, we consider writing “5” as a sum of
26 integers nA, nB, . . . , nZ where nA is the number of times letter
A is chosen, nB is the number of times letter B is chosen, etc.

Then by (4.38), the number of 5-letter words is(
5 + 26− 1

5

)
=

(
30

5

)
= 142, 506.

4.40. For the “unordered sampling with replacement” calculation,
it is tempting to start with the formula nr for the “ordered sam-
pling with replacement” case and then change to the “unordered
sampling” case by × 1

r! via the division principle. (This was, after
all, the technique that we used back when we considered “sampling
without replacement” in 4.32.

However, turn out that the same technique can’t be applied
here. This is because one key requirement for applying the divi-
sion principle is that each group should contain the same number
of member. When we did the “sampling without replacement”,
we are guaranteed to have r distinct objects. However, when the
sampling is with replacement, some objects may be chosen more
than once. We have already seen, in 4.27, that the number of pos-
sibilities when permuting r objects that are not all distinct is not
r!. More importantly, the numbers of possibilities are different de-
pending on how many repeated objects in each type. So, there are
various group sizes invalidating the application of division princi-
ple.

For example, suppose we have two object types: A and B. Let’s
select two objects using “unordered sampling with replacement”.
There are three possibilities: AA, AB, and BB. (Note that BA is
the same as AB because the sampling is unordered.) If we start
with “ordered sampling with replacement”, we have four possibil-
ities: AA, AB, BA, and BB. Grouping these possibilities using
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permutation, we have three groups: {AA}, {AB,BA}, {BB}. As
mentioned earlier, the group sizes are not the same and therefore
we can’t directly apply the division principle.

1

AA

AB

BA

BB

Two object types: A and B. Sample two objects with replacement.

AA

AB

BB

Unordered Sampling

3 possibilities

Ordered Sampling

4 possibilities

group 2

Figure 7: Division principle can’t be applied easily to convert the formula for
“ordered sampling with replacement” to the formula for “unordered sampling
with replacement.”

4.41. Summary:

(a) Four Principles:

1

 Addition Principle (Rule of Sum): Suppose that a finite set 
can be partitioned into (disjoint parts) 𝑆 , 𝑆 , … , 𝑆 . Then,

|𝑆| |𝑆 | |𝑆 | ⋯ 𝑆 .
 Multiplication Principle (Rule of Product): For finite sets 
𝑆 , 𝑆 , … , 𝑆 ,

|𝑆 𝑆 ⋯ 𝑆 | |𝑆 | |𝑆 | ⋯ 𝑆 .
 Subtraction Principle: Let 𝐴 be a set and let 𝑆 be a larger set 

containing 𝐴. Then
|𝐴| |𝑆| 𝑆\𝐴 .

In particular, |𝐴| |𝛺| |𝐴 |.
 Division Principle (Rule of Quotient): When a finite set 𝑆 is 

partitioned into equal-sized parts of 𝑚 elements each, there 
are |𝑆| 𝑚⁄ parts.

Cartesian products

set minus

(b) Four Kinds of Counting Problems:
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 Choosing r objects from a collection of n distinct objects is 
called sampling.

 The group/list/sequence of the chosen objects are known as 
a sample.

  with
replacement 

without 
replacement 

Ordered sampling  rn      
!
!r

nn
n r




Unordered sampling
1n r

r
  

 
 

 
n
r

 
 
 

 

 

An object can be
chosen repeatedly.

A sample is a 
sequence/list/word. 
Different samples are 

distinguished by the 
order in which we 

choose objects.

Once we choose an object, we remove 
that object from the collection and we
cannot choose it again.

The order of the 
elements is 
irrelevant.

1
!r



4.3 Binomial Theorem and Multinomial Theorem

4.42. Binomial theorem : Sometimes, the number
(
n
r

)
is called

a binomial coefficient because it appears as the coefficient of
xryn−r in the expansion of the binomial (x+y)n. More specifically,
for any positive integer n, we have,

(x+ y)n =
n∑
r=0

(
n

r

)
xryn−r (3)

For example,

(x+ y)3 =

(
3

3

)
x3 +

(
3

2

)
x2y +

(
3

1

)
xy2 +

(
3

0

)
y3

= x3 +

(
3

2

)
x2y +

(
3

1

)
xy2 + y3

= x3 + 3x2y + 3xy2 + y3.

To see why this is true, we will first try to directly multiply the
sums. However, to keep track of the variables, let’s first treat them
as distinct as shown in Figure 8. Under such consideration, observe
that expansion converts a product of sums into a sum of products.
Each resulting product contains a term in the first sum, a term in
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the second sum, and a term in the third sum. All the products
have unit coefficient. Product terms of the form x3, x2y, xy2, and
y3 arise after we try to convert x1, x2, x3 back to x and y1, y2, y3

back to y. Some product terms are the same and hence can be
combined resulting in the non-unity coefficients.Binomial Theorem

1

1 1 2 2( ) ( )x y x y  

1 2 1 2 1 2 1 2x x x y y x y y   

1 1 2 2 3 3( ) ( ) ( )x y x y x y    

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3x x x x x y x y x x y y y x x y x y y y x y y y       

( ) ( )x y x y  

( ) ( ) ( )x y x y x y    

2 323 33

xyy yxy yyxx yx

xy

y xyx y yy

y

xxx

x

xx

x y

       

   

2 22yyxx xxy yx xy y      

1 2 3

1 2 3

x x x

y yy

x

y

  

  

Figure 8: Binomial expansion: when treating all variables as distinct, in the sum
of products, we have a term from each sum that are multiplied in the original
expression.

The expansion of (x + y)3 can be found using combinatorial
reasoning instead of multiplying the three terms out. When (x +
y)3 = (x+ y)(x+ y)(x+ y) is expanded, all products of a term in
the first sum, a term in the second sum, and a term in the third
sum are added.

To obtain a term of the form x3, an x must be chosen in each
of the sums, and this can be done in only one way. Thus, the x3

term in the product has a coefficient of 1. To obtain a term of
the form x2y, an x must be chosen in two of the three sums (and
consequently a y in the other sum). Hence, the number of such
terms is the number of 2-combinations of three objects, namely,
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(
3
2

)
. Similarly, the number of terms of the form xy2 is the number of

ways to pick one of the three sums to obtain an x (and consequently
take a y from each of the other two terms). This can be done in(

3
1

)
ways. Finally, the only way to obtain a y3 term is to choose

the y for each of the three sums in the product, and this can be
done in exactly one way. Consequently. it follows that

(x+ y)3 = x3 +

(
3

2

)
x2y +

(
3

1

)
xy2 + y3.

Now, let’s state a combinatorial proof of the binomial theorem
(3). The terms in the product when it is expanded are of the form
xryn−r for r = 0, 1, 2, . . . , n. To count the number of terms of the
form xryn−r, note that to obtain such a term it is necessary to
choose r xs from the n sums (so that the other n− r terms in the
product are ys). Therefore. the coefficient of xryn−r is

(
n
r

)
.

4.43. From (3), if we let x = y = 1, then we get another important
identity:

n∑
r=0

(
n

r

)
= 2n. (4)

One interpretation of (4) is to think about the size of a power
set. Consider a set A with n (distinct) elements. We have seen
in 4.32 that A has

(
n
r

)
subsets of size r. Therefore, the sum on

the left in (4) is trying to count the number of all possible subsets
of A. In other words, the sum gives the size of the power set of
A. In Example 4.11, we have already shown that this number is
2|A| = 2n. This reasoning gives (4) without knowing the binomial
theorem.
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Definition 4.44. Multinomial Counting : The multinomial
coefficient (

n

n1, n2, . . . , nr

)
is defined as

r∏
i=1

(
n−

i−1∑
k=0

nk

ni

)
=

(
n

n1

)
·
(
n− n1

n2

)
·
(
n− n1 − n2

n3

)
· · ·
(
nr
nr

)
=

n!
r∏
i=1

ni!
.

We have seen this before in (4.27). It is the number of ways that

we can arrange n =
r∑
i=1

ni tokens when having r types of symbols

and ni indistinguishable copies/tokens of a type i symbol.

4.45. Multinomial Theorem :

(x1 + . . .+ xr)
n =

∑ n!

i1!i2! · · · ir!
xi11 x

i2
2 · · ·xirr ,

where the sum ranges over all ordered r-tuples of integers i1, . . . , ir
satisfying the following conditions:

i1 ≥ 0, . . . , ir ≥ 0, i1 + i2 + · · ·+ ir = n.

When r = 2 this reduces to the binomial theorem.

Example 4.46. Find the coefficient of x3yz in the expansion of
(x+ y + z)5.
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4.47. Further reading on combinatorial ideas: the pigeon-hole

principle, inclusion-exclusion principle, generating functions and
recurrence relations, and flows in networks.

4.4 Famous Example: Galileo and the Duke of Tuscany

Example 4.48. When you toss three dice, the chance of the sum
being 10 is greater than the chance of the sum being 9.

• The Grand Duke of Tuscany “ordered” Galileo to explain a
paradox arising in the experiment of tossing three dice [2]:

“Why, although there were an equal number of 6 par-
titions of the numbers 9 and 10, did experience state
that the chance of throwing a total 9 with three fair
dice was less than that of throwing a total of 10?”

• Partitions of sums 11, 12, 9 and 10 of the game of three fair
dice:

1+4+6=11 1+5+6=12 3+3+3=9 1+3+6=10
2+3+6=11 2+4+6=12 1+2+6=9 1+4+5=10
2+4+5=11 3+4+5=12 1+3+5=9 2+2+6=10
1+5+5=11 2+5+5=12 1+4+4=9 2+3+5=10
3+3+5=11 3+3+6=12 2+2+5=9 2+4+4=10
3+4+4=11 4+4+4=12 2+3+4=9 3+3+3=10

The partitions above are not equivalent. For example, from
the addenda 1, 2, 6, the sum 9 can come up in 3! = 6 different
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ways; from the addenda 2, 2, 5, the sum 9 can come up in
3!

2!1! = 3 different ways; the sum 9 can come up in only one
way from 3, 3, 3.

• Remarks : Let Xi be the outcome of the ith dice and Sn be
the sum X1 +X2 + · · ·+Xn.

(a) P [S3 = 9] = P [S3 = 12] = 25
63 < 27

63 = P [S3 = 10] =
P [S3 = 11]. Note that the difference between the two
probabilities is only 1

108 .

(b) The range of Sn is from n to 6n. So, there are 6n−n+1 =
5n+ 1 possible values.

(c) The pmf of Sn is symmetric around its expected value at
n+6n

2 = 7n
2 .

◦ P [Sn = m] = P [Sn = 7n−m].

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 

 
n=3
n=4

Figure 9: pmf of Sn for n = 3 and n = 4.

4.5 Application: Success Runs

Example 4.49. We are all familiar with “success runs” in many
different contexts. For example, we may be or follow a tennis
player and count the number of consecutive times the player’s first
serve is good. Or we may consider a run of forehand winners. A
basketball player may be on a “hot streak” and hit his or her
shots perfectly for a number of plays in row.
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In all the examples, whether you should or should not be amazed
by the observation depends on a lot of other information. There
may be perfectly reasonable explanations for any particular success
run. But we should be curious as to whether randomness could
also be a perfectly reasonable explanation. Could the hot streak
of a player simply be a snapshot of a random process, one that we
particularly like and therefore pay attention to?

In 1985, cognitive psychologists Amos Taversky and Thomas
Gilovich examined12 the shooting performance of the Philadelphia
76ers, Boston Celtics and Cornell University’s men’s basketball
team. They sought to discover whether a player’s previous shot
had any predictive effect on his or her next shot. Despite basketball
fans’ and players’ widespread belief in hot streaks, the researchers
found no support for the concept. (No evidence of nonrandom
behavior.) [14, p 178]

4.50. Academics call the mistaken impression that a random
streak is due to extraordinary performance the hot-hand fallacy.
Much of the work on the hot-hand fallacy has been done in the
context of sports because in sports, performance is easy to define
and measure. Also, the rules of the game are clear and definite,
data are plentiful and public, and situations of interest are repli-
cated repeatedly. Not to mention that the subject gives academics
a way to attend games and pretend they are working. [14, p 178]

Example 4.51. Suppose that two people are separately asked to
toss a fair coin 120 times and take note of the results. Heads is
noted as a “one” and tails as a “zero”. The following two lists of
compiled zeros and ones result

1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0
0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0
0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1

and
12“The Hot Hand in Basketball: On the Misperception of Random Sequences”
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1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0
1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 0
0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0
0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1

One of the two individuals has cheated and has fabricated a list of
numbers without having tossed the coin. Which list is more likely
be the fabricated list? [21, Ex. 7.1 p 42–43]

The answer is later provided in Example 4.57.

Definition 4.52. A run is a sequence of more than one consecu-
tive identical outcomes, also known as a clump.

Definition 4.53. Let Rn represent the length of the longest run
of heads in n independent tosses of a fair coin. Let An(x) be the
set of (head/tail) sequences of length n in which the longest run
of heads does not exceed x. Let an(x) = ‖An(x)‖.
Example 4.54. If a fair coin is flipped, say, three times, we can
easily list all possible sequences:

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

and accordingly derive:

x P [R3 = x] a3(x)

0 1/8 1
1 4/8 4
2 2/8 7
3 1/8 8

4.55. Consider an(x). Note that if n ≤ x, then an(x) = 2n because
any outcome is a favorable one. (It is impossible to get more than
three heads in three coin tosses). For n > x, we can partition
An(x) by the position k of the first tail. Observe that k must be
≤ x + 1 otherwise we will have more than x consecutive heads in
the sequence which contradicts the definition of An(x). For each
k ∈ {1, 2, . . . , x+ 1}, the favorable sequences are in the form

HH . . . H︸ ︷︷ ︸
k−1 heads

T XX . . .X︸ ︷︷ ︸
n−k positions
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where, to keep the sequences in An(x), the last n − k positions13

must be in An−k(x). Thus,

an(x) =
x+1∑
k=1

an−k(x) for n > x.

In conclusion, we have

an(x) =

{ ∑x
j=0 an−j−1(x), n > x,

2n n ≤ x

[20]. The following MATLAB function calculates an(x)

function a = a nx(n,x)
a = [2.ˆ(1:x) zeros(1,n−x)];
a(x+1) = 1+sum(a(1:x));
for k = (x+2):n

a(k) = sum(a((k−1−x):(k−1)));
end
a = a(n);

4.56. Similar technique can be used to construct Bn(x) defined
as the set of sequences of length n in which the longest run of
heads and the longest run of tails do not exceed x. To check
whether a sequence is in Bn(x), first we convert it into sequence
of S and D by checking each adjacent pair of coin tosses in the
original sequence. S means the pair have same outcome and D
means they are different. This process gives a sequence of length
n− 1. Observe that a string of x− 1 consecutive S’s is equivalent
to a run of length x. This put us back to the earlier problem of
finding an(x) where the roles of H and T are now played by S and
D, respectively. (The length of the sequence changes from n to
n − 1 and the max run length is x − 1 for S instead of x for H.)
Hence, bn(x) = ‖Bn(x)‖ can be found by

bn(x) = 2an−1(x− 1)

[20].
13Strictly speaking, we need to consider the case when n = x+ 1 separately. In such case,

when k = x+ 1, we have A0(x). This is because the sequence starts with x heads, then a tail,
and no more space left. In which case, this part of the partition has only one element; so we
should define a0(x) = 1. Fortunately, for x ≥ 1, this is automatically satisfied in an(x) = 2n.
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Example 4.57. Continue from Example 4.51. We can check that
in 120 tosses of a fair coin, there is a very large probability that at
some point during the tossing process, a sequence of five or more
heads or five or more tails will naturally occur. The probability of
this is

2120 − b120(4)

2120
≈ 0.9865.

0.9865. In contrast to the second list, the first list shows no such
sequence of five heads in a row or five tails in a row. In the first
list, the longest sequence of either heads or tails consists of three
in a row. In 120 tosses of a fair coin, the probability of the longest
sequence consisting of three or less in a row is equal to

b120(3)

2120
≈ 0.000053,

which is extremely small indeed. Thus, the first list is almost
certainly a fake. Most people tend to avoid noting long sequences
of consecutive heads or tails. Truly random sequences do not share
this human tendency! [21, Ex. 7.1 p 42–43]
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